工作原理
1. 运动
通过多种机构方案将前道工序的产品取至检测设备中,产品在三个检测工位中流转检测,检测完成后,产品摆盘或剔除至不良盒中。
2. 触发、拍照
PLC通过IO输出方式触发相机拍照,检测软件收到相机拍摄产品的图像。
3. 算法检测
检测软件在收到图像后,经过一系列的处理与检测,根据参数的设定对产品进行结果判定。
4. 分拣、摆盘
PLC根据检测软件的结果判定,对产品进行分类摆放和剔除。
产品特点
工位多光源方案,最大化检测项,最小化检测工位体积
高亮条光、蓝色背光、红色激光结合:
检测表明缺陷的同时,切换不同光源可以检测冲钩废、产品高度。
白色背光、双环光结合:
检测底部电木掉块同时,切换环光可以检测槽部、钩部缺陷。
白色环光、白色背光结合:
测量顶部电木掉块同时,切换白色背光可以测量钩部长度、角度、宽度等缺陷。
传统算法+深度学习双重方法检测,对产线环境和物料有更强的鲁棒性
针对部分缺陷,传统算法无法直观、稳定地检测到特征时,本检测方案会是使用深度学习进行检测或测量,以达到更好的或传统算法无法实现的效果。
自动取料、摆料
视觉检测设备可以产线连线通讯,摆料。减轻员工工作量,提高工作效率。
一机多测
视觉检测设备可以与电气检测共同使用。例如:片轴检测、片间检测,内径检测,实现一机多测的功能。一台设备可以实现电气、外观全方位检测,在有限的设备空间内,最大化检测效果。
ERP、MES、看板集成
视觉检测软件实时记录产品的检测记录,为后期通过API或数据库等方式与各系统集成提供可能。方便对产品质量及检测效果进行直观地分析。
检测效果展示
铜排损伤检测
铜排表面损伤是换向器常见缺陷,但由于其出现位置随机、颜色不一。使用传统算法会因物料和设备等原因,需频繁调整参数。使用深度学习可以在必选反复调参的前提下,实现很好的检测效果。
铜排内陷检测
铜排内陷多出现于铜排底部,其呈现颜色为亮色或暗色,因此使用传统算法较难检测。使用深度学习可以比较稳定地获取此特征。
铜排缺角检测
铜排缺角位于铜排底部角落,其难点在与:如何保证检测效果的前提下,如何降低误检。使用数据集增强方法可以提高检测准确率并降低误检。
铜排圆边检测
铜排圆边缺陷位于铜排一侧,往往伴随铜排铜排肩部电木粉缺陷出现。此种缺陷均使用深度学习的目标检测方法检测。
冲钩废检测
底部槽封料检测
软件展示
转自:苏州时新集成技术有限公司
注:文章版权归原作者所有,本文仅供交流学习之用,如涉及版权等问题,请您告知,我们将及时处理。